If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-2x-36=0
a = 4; b = -2; c = -36;
Δ = b2-4ac
Δ = -22-4·4·(-36)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{145}}{2*4}=\frac{2-2\sqrt{145}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{145}}{2*4}=\frac{2+2\sqrt{145}}{8} $
| 2x-7=3x+5=153 | | -6(7-5x)=318 | | 2x=88.4 | | 3s=-14+4s | | ||2x+3|−7|=12 | | X^2=930+x | | 5x^2+24-4=0 | | 3/5(x-4)-1/3(2x-9)=1/4(x+1)-2 | | -5(2x+10)=-140 | | 3x/4=-7-x | | 14x-22=48 | | 4x+0.7=4.7 | | 7x-14+2x=2x+30 | | -13x-14=-53 | | 2x+4=5×-14 | | 4r^-3=-32 | | 63=-5d+8 | | 0(t)=-16t^2+40t+6 | | 10a+4=100 | | 9x-6x=-5x | | -4.9x^2+30x=0 | | 8((-2+1)=(-15(x+1) | | a=1/2+24*21 | | 5/6x-7=7/8x | | 180=4x+12+90 | | 3+6x=-x+38 | | x÷200=100 | | 180=3x+6+4x-12 | | (-6x-5)=4(5x+3) | | 180=3x=6=4x-12 | | 8(a/5)=70 | | 4(x-5)=3(x-7)+x+1 |