If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-32=90
We move all terms to the left:
4x^2-32-(90)=0
We add all the numbers together, and all the variables
4x^2-122=0
a = 4; b = 0; c = -122;
Δ = b2-4ac
Δ = 02-4·4·(-122)
Δ = 1952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952}=\sqrt{16*122}=\sqrt{16}*\sqrt{122}=4\sqrt{122}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{122}}{2*4}=\frac{0-4\sqrt{122}}{8} =-\frac{4\sqrt{122}}{8} =-\frac{\sqrt{122}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{122}}{2*4}=\frac{0+4\sqrt{122}}{8} =\frac{4\sqrt{122}}{8} =\frac{\sqrt{122}}{2} $
| )3x+2=20 | | -6f+4.5f-1.59=0.2f+6.4 | | 12-5d=97 | | 10x^2+15=55 | | 6(k-95)=6 | | 12-7d=-9 | | 27x^2=-75 | | 2x–4=18 | | 144+1225=c^2 | | 5.25x+24=10x | | 5(k+11)=65 | | T=10n | | 4x2-32=180 | | -6n+7=-11 | | e+28=42 | | 13=n/7+10 | | .7x-3.4=10.5 | | 5s-14=6 | | 180=x^2+12x-10 | | 7(b−87)=77 | | (x+6)/13=2 | | 21^x=7^(x+2) | | -1=-5/2x | | 2y^2+12y=32 | | u+35/9=8 | | 7y+27=4y | | -3x²+15x+6+7x⁴=0 | | -4x-7=26x-6(x-7) | | 3.2x^2-7.5x=0 | | 9n-18=27 | | 21x=7x+2 | | 3(h+76)=–21 |