If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-32x+12=0
a = 4; b = -32; c = +12;
Δ = b2-4ac
Δ = -322-4·4·12
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{13}}{2*4}=\frac{32-8\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{13}}{2*4}=\frac{32+8\sqrt{13}}{8} $
| 205x=20 | | 6x×5=35 | | 4^x+4^x=4096 | | 4^x+4^x=8^4 | | x/6=9/15 | | -4.1=2.3+x/4 | | 32=4*h | | -25=4+3x | | 13.6=40.8/x | | 6x=48-1x | | 0.75b=12 | | x^2+13^2-(21-x)^2=20^2 | | -2/3+x=3/5 | | 5(x+4)=5(x-14) | | −x+(−3)=x+3 | | 10x+8=40 | | 1/4n+7=110 | | 2r-3r+10=20 | | 2(x+1)^2=134 | | (x+90/3)+36=135 | | 15-20y=-12 | | 5x+135=360 | | 6x+18=36- | | 9-5x=81 | | 3x+7x-5=45 | | 3y+6y=-(2y+4) | | 5x=13=`03 | | 2/3(6x-9)=-46 | | 4x+36=148 | | 4x+46=148 | | 2x+44=88 | | 62+x=141 |