If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-36=0
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $
| 2p/5=8 | | 300=(3)(9.8)(h) | | 33m=21 | | -7(4-4x)=84 | | 10-4d=-5-9d | | 4/3(7-n)=13 | | x-7=11+4x= | | 9y+10=7y | | (7x+4)=4x-6(2-x)+7 | | 108=2x-4 | | -7x+6=-71/6 | | 17.3=x-3.3 | | -29=5(2a-11)+2a | | y=1/2(7)-6 | | 7x+2-6=-11 | | 6s+10+2s=3s-10 | | 6^x-4=17.4 | | 109+4y-9=180 | | 15b+3-3b+5=44 | | y=1/2()-6 | | 4(x-2)+5=3-6(3-x) | | -20=4-7x-x | | 5=z/11+7 | | 24x^2+19x=2 | | 2r=3r+7 | | 2x(x2-2)+7x=9x+2x3 | | 1+0,25y+10*0,4=0 | | -3-9g=2g+8 | | a/4+5=15 | | 4(v-9)-8=-6(-3v+6)-8v | | -75=8w+5 | | 15y-48+63=180 |