If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-36x+12=0
a = 4; b = -36; c = +12;
Δ = b2-4ac
Δ = -362-4·4·12
Δ = 1104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1104}=\sqrt{16*69}=\sqrt{16}*\sqrt{69}=4\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{69}}{2*4}=\frac{36-4\sqrt{69}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{69}}{2*4}=\frac{36+4\sqrt{69}}{8} $
| x+.10x=5642 | | 3x-0.4=-7.6 | | 3x³+4x^2-6x+9=0 | | 3^x=0.3 | | j/6+5=13 | | y=40+1/5 | | Y=14-0.5x30 | | 16x-8=9x-43 | | (9x-15)=(8x-10) | | 1a+2a+3a=7a | | 2(7+2y)-5y=17 | | 5x100=500 | | C=2y+7 | | 3(4x-10)=86 | | X2x=150 | | 2k+62=180 | | 2k-62=180 | | 20-y=259 | | 16x^2+8x=0 | | 65=1.5x+2.25x+3.375x | | 1.2x=31 | | 1/5x3=5 | | 4y+3y=-6 | | 59=5x9 | | 5x/12=12 | | √t+15=9 | | +x+6=-28 | | 1/1/5y-7=1/3y-9 | | 5t²+20t+20=0 | | 60=5x—10 | | 8x–7=6x+10 | | 13x-10=5x+10 |