If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-400=0
a = 4; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·4·(-400)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*4}=\frac{-80}{8} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*4}=\frac{80}{8} =10 $
| 8–3(x–4)=4 | | M+2/3m-1+1=6-m/m+1 | | 4x-1x2=x+7 | | 7x(x+2)=21 | | 7·(x+2)=21 | | (3w+4)-(5w+1)=w | | 2^x=0.36 | | 4/3x+5/5=13 | | 39x=x | | v/2/9=90 | | -6(2t+9)=-114 | | x+x(.075)=148.45 | | 8=4^3x | | 3x-16°=2x+10° | | (4x+7)=12x2+21x | | -10(s+5)=-66 | | (2x-30)(x+60)=180 | | 4(6x+3)=(5X3,+7) | | 2(x-6)-1=5-4x | | -6(2t+8)=-36 | | 2x-10=-x+25 | | 1y+7y=32 | | 2y+12y=-16 | | -4k^2+2k=-60 | | x2+11x+15=-3 | | (A)(b)(b)=96 | | -2/3x+6=16 | | (X)(y)(y)=96 | | 6x+34=8x+14= | | 7x2+2=49 | | m49=7 | | 5x+100=3x+122= |