If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-42=0
a = 4; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·4·(-42)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*4}=\frac{0-4\sqrt{42}}{8} =-\frac{4\sqrt{42}}{8} =-\frac{\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*4}=\frac{0+4\sqrt{42}}{8} =\frac{4\sqrt{42}}{8} =\frac{\sqrt{42}}{2} $
| 8m÷6=54 | | 4p-3=13(p4) | | 3(v+8)=6 | | 3x^2+5x-7=2 | | 4x^2-80x-8=0 | | 5r+2=4r+602 | | 4x2/11=-3 | | 8(m-1)-(m-2)=6(m+3) | | 4x+2/11=-3 | | 31.5=5v+9 | | -20=4(3x-8 | | 2x²+2x=12 | | a=(4a+a)+3 | | x+0.2x=2400 | | 2x2-19=1 | | 22p-5=10p+19 | | 2(z-3)=4(5-z) | | 6376,5a=6180,3a+784,8 | | x+0.4=6.4 | | 9x^2+5/9=0 | | 2×(2x+x)=60 | | (3x+1)5=9x-1 | | 2x+3=25-4,5x | | -900+0,4y=300-0,2y | | 6x2-16x+12=0 | | -16+n=28 | | 3y+(-4)=y+10 | | x/3+5=2x/3-3x/2 | | 8a-30+2a=5+10-a | | Y-28=7(x-7) | | 12x-31=11x-19 | | 12x4-31=11x-19 |