If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-45=0
a = 4; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·4·(-45)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*4}=\frac{0-12\sqrt{5}}{8} =-\frac{12\sqrt{5}}{8} =-\frac{3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*4}=\frac{0+12\sqrt{5}}{8} =\frac{12\sqrt{5}}{8} =\frac{3\sqrt{5}}{2} $
| 3y-8=-2y+5 | | (2.5+x)/3=3.5 | | x(-4x+21)=18 | | 7.33*4.5*8=x | | 4.5*x=33 | | x*0.65=8.8 | | 8*2x=72 | | y=2/3+5/6 | | y=4/9-(-7/9) | | y=-4/5+1/10 | | y=-6(0)+9 | | y=-6(1)+9 | | 5c÷7=2(c-10) | | m=(-17)-(-4)/(-12)-(-5) | | S^3+4s^2+4s+4=0 | | S3+4s2+4s+4=0 | | -20/7×x=25/42 | | 1-5(x)=0 | | y=3/2(-10)-4 | | y=3/2(-4)-4 | | y=3/2(9)-4 | | y=3/2(8)-4 | | y=3/2(5)-4 | | y=3/2(4)-4 | | y=3/2(2)-4 | | y=3/2(1)-4 | | 3y+14=8-5y | | y=3/2(0)-4 | | X^2=-15x-156 | | y=0.40(82) | | 3x/2-3x/5=10 | | 3d^2-13d-30=0 |