If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-4x=11
We move all terms to the left:
4x^2-4x-(11)=0
a = 4; b = -4; c = -11;
Δ = b2-4ac
Δ = -42-4·4·(-11)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{3}}{2*4}=\frac{4-8\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{3}}{2*4}=\frac{4+8\sqrt{3}}{8} $
| -5/3x+3=-7 | | 3x^2-8=964 | | 22.5x−4.6=3.5 | | 100=1.17x+5 | | 3y+9=69 | | 18.54+3.6z=−0.6(z−9.9) | | 8+2x+5x=71 | | 5x+7=19x | | 119+.82x=x | | -6x+7-1/4x=151/18 | | 2+8x=6+3 | | 2x-9=5/x | | 2.5x+5=80 | | x²+6x-7=0 | | x^2(2x+3)=2x(3x^2+5x) | | 3(w+4)=4w-5 | | 16/x=x+6 | | (x-15)-2=-40 | | X÷3=x-5 | | -5(2x-6)=4(×+11) | | 4+2(x)=35 | | 4+2(w)=35 | | 2x^2+9x-656=0 | | (2x+3)(X=5) | | 5•21^5x=16 | | (x+8)^2+x^2=900 | | -49-3x=4x | | 10y-6y+17=3 | | (3m+13)°=31° | | -5=6x-8 | | t/−4=9. | | 7x-4x-10=3x+10 |