If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-5x=0
a = 4; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·4·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*4}=\frac{10}{8} =1+1/4 $
| -16k=-288 | | -15/x=6/7 | | 3x=-5=7 | | 26.54-p=0.4(50-p) | | 2p-0.2=1p+0.30 | | 9/5+2/5x=41/20+7/4x+1/4 | | x=48+6 | | 3q+5+2q–5=65 | | 175m+100m+52,525=55,550-200m | | 13u-17-48=0 | | 2x+6(+1)=0 | | 12500-200h=6500+100h | | 3q+5+2q–5=65. | | 1/x-2-1=2x/x+1+1/2 | | 144x+6=180 | | 5(3x-2)=-190 | | -3(b+7)=-36 | | -1/5(15b-7)=3b-9 | | 2p-0.2=1p+.30 | | (1/x-2)-1=(2x/x+1)+(1/2) | | 9-4(2p-1=41 | | X(x+1)=36 | | x=16.35-39.75 | | 3.4x=19.04 | | 2(0.5c-1.5)-6=-2 | | q+|6.9|=9.6 | | -w/2+3=w/4-5 | | 40+14j=-8-26 | | 2m/5=2m/3-4 | | Y=10/3x+5 | | F(x)=-2x2+7 | | 9/3=7/t |