If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-1=0
a = 4; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·4·(-1)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{5}}{2*4}=\frac{8-4\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{5}}{2*4}=\frac{8+4\sqrt{5}}{8} $
| w2+7w-3=0 | | 4x-22=-4(1-6x) | | 3/f=2 | | 2(7m)=28 | | -3n+4n=3n | | 3/2+b=11/4 | | z2+8z+1=0 | | 3^1/10s=61/5 | | 8x–12=4x+16 | | 8+x4=88 | | 9x-(-6)=24 | | 5x+650=4.9x^2+700 | | 11=p/7+3 | | 2|3a+5=10 | | -15w-8=37 | | -5p-2=18 | | (x)=x+(40-x) | | 0.4x+8=x+1 | | S(x)=x+(40-x) | | 0.4x-8=x+1 | | (3x-1)^6=-540x^2 | | x18+x10=544 | | x+(x-40)=x*x=40 | | 6+5b=24 | | x+(x-40)=x | | y2-4y-1=0 | | 3a-4=8a | | 7p+7=-35pp= | | -3r-10=-46 | | 6.4/x=4/5 | | 4/4=x-5.6 | | 5-2x^2=10 |