If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-9=2x^2+41
We move all terms to the left:
4x^2-9-(2x^2+41)=0
We get rid of parentheses
4x^2-2x^2-41-9=0
We add all the numbers together, and all the variables
2x^2-50=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| 7=12-3√x | | (-x-9)+x=11 | | 5/1=m/8 | | 32*3x-32*1=32*8 | | X^2=44y | | -7+4x=81 | | 40=x/10 | | 4/m+6=3 | | 14x-82=291 | | 9=v-58/4 | | 54=g/5+48 | | 14x=5x+171 | | 6(x-8)-16=-12(x+5) | | 10-3n=38 | | 0.75+0.2x=0.5x+0.15 | | x-0.07x=8.973 | | 6/r=48 | | 1.5x°+(1x-46°)+(1x-35°)=360° | | 3(2x-5)=5(4+x) | | 266=2X-x | | 3(4+x)=2x+7 | | 10x-2(x+6)+31=3x | | 3(2y+5)=2(4y-3) | | 19−-3f=-47 | | 5^(3x+2)=40 | | 2m-22=52 | | 9x+8-4x=3x | | s/5+55=64 | | 4(y+12)=76 | | -8=3y-55 | | h/7−1=2 | | 2a^2+8a–15=3a–3 |