If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=10
We move all terms to the left:
4x^2-(10)=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 3/5j-20=9.64 | | f(-4)=2(-4)+5 | | z+5/2=3-z/7 | | 10^x+8=7^2x | | j=3(28) | | 0.2+0.4x-0.3(x-10)=0.3x-4 | | 4x-6x-15=10 | | 10x+8=72x | | 25e+5=4 | | -14n+6=-13n-10 | | 3x*15=315 | | 40x-25=38x-7 | | 25e+4=5 | | 3(2x-2)+1.5x=201 | | 2(9x-6x+5)=-2. | | 72.8=7(m+3,6) | | 20x-8=14x+10 | | y+5y=1 | | 2a+3=1/2(6+4a | | 1/6(x-6))+1/2(x+2)=x+2 | | 5e+4=25 | | 15x+40=12x+25 | | X^3+2x^2-11x+12=0 | | 7xx=3 | | 7(42^2x)=28(4^x) | | X+5/x-1-1=2x-5/9 | | -6x-5+9x=10 | | 2x-2=2x-13 | | 52/5+a=-15/32 | | 12/k=k/75 | | 30x-15=18x-63 | | 2x-2+2x-13=180 |