If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=12
We move all terms to the left:
4x^2-(12)=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $
| -20z-9=-19z | | 2x+5=3(x+1)+2 | | (2m-1)/7+M+5/3=4 | | -11-19d+d=-16d+13 | | 5x/8+x/2=17/8-x | | (2x-5)^2=49 | | (2m-1)/7=4 | | 5-3x=Px+7 | | 4.71+14.1n=12.8n-4.78 | | 3(x-7)+8=4(1-x)-2(x+10) | | -9+18t=17t | | 2c-7=c-15 | | 39.95.0.32x+9.80=70.23 | | 3(1+5r)-4=-4(-2r-5) | | -18g=-16g-12 | | 6(4-x)=-4 | | 2x-9=3x-26 | | 1.6/5=x/12 | | 3x+5=10(x-2)-7x | | -17.97-3.3w=2.3w+18.99 | | -3(x+2)=-7(3x+6 | | 11x-26=7x+26 | | -17-15h=4-12h | | 100=30+43+x | | 7.5p-11.62+12.88=8.9p+19.6 | | 4(8-2x)=8x+32 | | -18=+5-3(6t+5) | | |z+4|=|z-8| | | 100-16=4p=10p-p | | -18.3u-6.16=-9.5u | | ..5d-3d+5=0 | | 7-x+4x-13=-3 |