If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=140
We move all terms to the left:
4x^2-(140)=0
a = 4; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·4·(-140)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*4}=\frac{0-8\sqrt{35}}{8} =-\frac{8\sqrt{35}}{8} =-\sqrt{35} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*4}=\frac{0+8\sqrt{35}}{8} =\frac{8\sqrt{35}}{8} =\sqrt{35} $
| 17y+24=177 | | f(7)=3(7)+4 | | x+2x+21+x+2x+21+90=180 | | 1=x(1-0.04) | | 8xx=1000 | | 3.2x-9.4=18.8 | | T(n)=-3+20 | | Y+9=-3(x-1) | | z+18=13 | | x+2x+21+x+2x+21=180 | | -8=2c-3c+5c | | (8x-11)-(15x)=1 | | 3p^2=-14p-4 | | (x/16)=6 | | (4v+)(v+7)=0 | | -4x-(5x+6)=-7+3 | | (5.00x+0.65=10.00x+0.45) | | -9(x-5)=x+221/2= | | X=y(1-0.4) | | 6x-1x=-5(2x+4) | | 11-2(3x-10=5(4-x) | | 18+u=-11-15+5u | | 22.45x+40=250 | | -3=n=10 | | 36=3x+3x | | 1/8=x/100 | | 0.5y+2.4=-61 | | 224=56h | | 4(2x+7)=12x+22-4x+6 | | 17-3p+12=6p-16 | | 5+7m=-128 | | 2x+14=1/5(2x+70) |