If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=15
We move all terms to the left:
4x^2-(15)=0
a = 4; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·4·(-15)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*4}=\frac{0-4\sqrt{15}}{8} =-\frac{4\sqrt{15}}{8} =-\frac{\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*4}=\frac{0+4\sqrt{15}}{8} =\frac{4\sqrt{15}}{8} =\frac{\sqrt{15}}{2} $
| F(x)=4x^2+2x-2 | | 9x-7=-7* | | 2x+6=-2x+14 | | 5x-15=x+17 | | 6=a/4+2* | | 3x3x+7-2x2x=32 | | -6u-1=u-9-9u | | 29f–f+6f=0 | | 8n-17=23 | | 8-2z=4z-10 | | -7f+9=-10f | | -13-17d+32d=0 | | -3x+4-2x-3=51 | | 96=6x+36 | | -81x2=-11 | | 6b=6=48 | | -10v+7=-5v-7-3v | | 7^(3x)=54 | | 8v+9=9v | | 3k=8 | | -13.7u=-14.96-14.8u | | 6-3t=-t-10 | | 1/5(x+6)=18 | | 331+7=6x | | 6p=4+10p | | 45−5x=5x+55 | | c-18=47 | | 3p+15=25 | | 331=13x | | 5x-(10)=2 | | 7-(r+4)=3r-1 | | 109v-3)=-10(v+9) |