If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=180
We move all terms to the left:
4x^2-(180)=0
a = 4; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·4·(-180)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{5}}{2*4}=\frac{0-24\sqrt{5}}{8} =-\frac{24\sqrt{5}}{8} =-3\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{5}}{2*4}=\frac{0+24\sqrt{5}}{8} =\frac{24\sqrt{5}}{8} =3\sqrt{5} $
| 2^2x-1=16 | | 2x−129−2x−66=2 | | 2a-3=7+3 | | -1/3*d=12 | | 5(5w+5)=350 | | 3p^2-20p-34=10 | | 4a-3=2a+7-2a | | y+2(y+1)+3=5y-1 | | 35x^2-79x=-42 | | 6g^2(3g^3+4g^2)=0 | | F-16=3f+18+2f | | 1−2/x=10/3x−1/3 | | 3y-8=2y-7 | | -1/4x+1=0 | | 10^-x=5^6x | | 5=1/6y | | 6n-2-4n+8-n=0 | | -x/2+1/2=-1/2 | | -5z-3=-1 | | -x/8=-1/64 | | 2x^2+3x=21 | | K^2-7k+18=0 | | 4x+3=19/7-1x4 | | 6n-2n-4n+8-n=0 | | 9n+(7n+21)=39 | | 2x-4/3x=0 | | 0.18x+0.2(6,000-x)=1,260 | | 6a+2=5a+5 | | 4(-2+3x)=-32 | | 6x+x+x=96 | | 9y=10=-8 | | 9x+x+x=96 |