If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=2x+10
We move all terms to the left:
4x^2-(2x+10)=0
We get rid of parentheses
4x^2-2x-10=0
a = 4; b = -2; c = -10;
Δ = b2-4ac
Δ = -22-4·4·(-10)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{41}}{2*4}=\frac{2-2\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{41}}{2*4}=\frac{2+2\sqrt{41}}{8} $
| 21=4v-4 | | m4+ 9=12 | | 2(25+-0.5y)+y=50 | | -4+-r=-10 | | x+3.2=8 | | A=600-120t | | (2x+1)(2x-3)(x+4)=266 | | 2(x-4)=43 | | -4y=2=9-3y | | -16=7x+12 | | x+(x*8/100)=108 | | -3=3k-9 | | 13x+5x=12 | | k/9-29=41 | | 15+5x=4(−x+3)−24 | | 4u+8=5 | | 7t-5t=10 | | 3/2x+4=19 | | 7w+35=42 | | 11-3=c-4 | | 35n-162=468 | | –738=d+–1 | | 4x−3=2x | | (2/3)x+4=(5/3)x | | x+0.2x=117 | | -6x-4=34 | | 3/4x-4=56 | | -6x-4=-31 | | a-1=11-7 | | 8.5=-5z | | -7+7x=49 | | 2x/5=-60 |