If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=32
We move all terms to the left:
4x^2-(32)=0
a = 4; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·4·(-32)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*4}=\frac{0-16\sqrt{2}}{8} =-\frac{16\sqrt{2}}{8} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*4}=\frac{0+16\sqrt{2}}{8} =\frac{16\sqrt{2}}{8} =2\sqrt{2} $
| 7x+28=7(x+) | | s-$15=$15.91 | | 16r-2=12r+6 | | 0.333333d=55 | | -2x+13=3x-2 | | 17x-86=11x-56 | | 9x-3=33(V) | | -2x+2(-5x-13)=82 | | 26x+94=17x+58 | | 2x-16=x-9 | | 7(2x-4=42 | | 10(x+2)-(2x-9)=30 | | 5m+6=10m+5 | | 4.42r+4.42=8,84 | | 3x+28=4x+10 | | -7x-9=-14x-16 | | 2x+3=|x-5| | | 3/4=5/2x-2 | | -6x-31=-9x-58 | | 20x-61=30x-101 | | 180=3x+28 | | 180=3x=28 | | 9-12x=-6x | | (9^-5x)=15 | | -16x+9=-24x+17 | | 7z+4=3z-12 | | 10x-26=16x-44 | | -22x+168=-14x+96 | | 5x+13=6x-3 | | v+3.64=5.58 | | -21x+38=-13x+22 | | 10d−3d=14 |