If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=600
We move all terms to the left:
4x^2-(600)=0
a = 4; b = 0; c = -600;
Δ = b2-4ac
Δ = 02-4·4·(-600)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{6}}{2*4}=\frac{0-40\sqrt{6}}{8} =-\frac{40\sqrt{6}}{8} =-5\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{6}}{2*4}=\frac{0+40\sqrt{6}}{8} =\frac{40\sqrt{6}}{8} =5\sqrt{6} $
| C(x)=25.50-0.06x | | C(x)=25.50-0.06(40) | | (x+4)+(3x-24)=180 | | 7n/9+14=21 | | 2n/9+14=21 | | 2x-6=8+5x+45 | | 6t+3t+10-11=16+5t | | x/(5^x)=7 | | x/(5^2)=7 | | 4m-3+2m=8m-3 | | 9•x-7=65 | | x+4.9=11.7 | | q=52 | | q/26= 4 | | u=133 | | 6 = u/19 | | x/18= 1 | | t/69=2 | | 2x-1-5=0 | | a=9 | | 12 a= 217 | | a=18+1/12 | | 24=-3+3n | | 12a=217 | | 2/3y+1/212=1 | | s=6.95 | | s− 2.1=4.85 | | 2/3-9=2y-2/5 | | 8(2.6v)+19=-61 | | d=3.01 | | 6.64 =3.63+d | | d=4+0.19/1 |