If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x=38(-1/2)(4x+16)
We move all terms to the left:
4x-(38(-1/2)(4x+16))=0
Domain of the equation: 2)(4x+16))!=0We multiply parentheses ..
x∈R
-(38(-4x^2-1/2*16))+4x=0
We multiply all the terms by the denominator
-(38(-4x^2-1+4x*2*16))=0
We calculate terms in parentheses: -(38(-4x^2-1+4x*2*16)), so:We get rid of parentheses
38(-4x^2-1+4x*2*16)
We multiply parentheses
-152x^2+4864x-38
Back to the equation:
-(-152x^2+4864x-38)
152x^2-4864x+38=0
a = 152; b = -4864; c = +38;
Δ = b2-4ac
Δ = -48642-4·152·38
Δ = 23635392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23635392}=\sqrt{23104*1023}=\sqrt{23104}*\sqrt{1023}=152\sqrt{1023}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4864)-152\sqrt{1023}}{2*152}=\frac{4864-152\sqrt{1023}}{304} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4864)+152\sqrt{1023}}{2*152}=\frac{4864+152\sqrt{1023}}{304} $
| (4x-15)=(x+51) | | 6/3-2x=7/x+1 | | 6x-5=8x+11 | | 24=6w-3w | | 25+7x=60 | | 5x+2=56-4x | | (-6a-5)6=78 | | 2n+1=4/3 | | z+4=44 | | z+4=44, | | 6x-2=3(2x+1) | | -2.96=0.8(0.4+x) | | -4=5+3h | | -12-3y=-12 | | 6x+21=3() | | 16-4(2x+1)=6x-(-1+3x) | | -20=-2x-10 | | -4(2m+7)=1/2(6-16m) | | 2x-4(x-1)=-5(1+x) | | 3x+x+2=8x+9 | | 15.95+91x=189.76 | | 9-2x*11=33 | | 1.5b+b+b+45+90+2b-90=540 | | 11x-(8x-2)=11 | | -3(4)-3y=-12 | | 91c+15.95=189.76 | | 29x+24=360 | | 3(x+1)/4=4x-2 | | 2(3x-70=-21 | | 35+y=6y | | 5+x-3=8 | | 4x-3*12=156 |