If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y(2y-10)=0
We multiply parentheses
8y^2-40y=0
a = 8; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·8·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*8}=\frac{0}{16} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*8}=\frac{80}{16} =5 $
| 7-3v=19 | | 16j=4 | | 4(x+1)+7=2x+2(5+x) | | 0.75x+4=0.25x+7 | | 7(5x+4=133 | | -1/5(15-20x)=4x-3 | | 12x+4=2x+16 | | 2x+5(5x-11)=121 | | 4x+5=5(x+1)-1 | | y-2.8=45.6 | | 5x+15=2x+10+2x | | 75x+4=133 | | (6x-3)°=(2x+13)° | | 0.4x-5=0.2x+7 | | 2(4v-7)=77 | | 1x-9=-10 | | -w/2=-55 | | 6(x-60=x(16-7) | | 2y-14=36 | | 2r+10=2(r+5) | | -6n=2n=16 | | 0.4x-5=0.2x+17 | | 35x^2-44+12=0 | | -3(y+10)=y | | 3(2x-3)=6x-3 | | 1x-2=-10 | | 4(2n+3)=4 | | 2x-14=3x-46 | | 7x-5=6x-1=5x | | 2x+3=-2+x | | 5x+5=200 | | 2+4k-5k–1=-19+2k |