4y+-3=63/y=

Simple and best practice solution for 4y+-3=63/y= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4y+-3=63/y= equation:



4y+-3=63/y=
We move all terms to the left:
4y+-3-(63/y)=0
Domain of the equation: y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
4y-(+63/y)-3+=0
We add all the numbers together, and all the variables
4y-(+63/y)=0
We get rid of parentheses
4y-63/y=0
We multiply all the terms by the denominator
4y*y-63=0
Wy multiply elements
4y^2-63=0
a = 4; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·4·(-63)
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*4}=\frac{0-12\sqrt{7}}{8} =-\frac{12\sqrt{7}}{8} =-\frac{3\sqrt{7}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*4}=\frac{0+12\sqrt{7}}{8} =\frac{12\sqrt{7}}{8} =\frac{3\sqrt{7}}{2} $

See similar equations:

| 6x+2=5x+3.X= | | 9+|2-5m|=51 | | 9(n+1)=2(n-2) | | C+1c=2c-10 | | -12=3/9x | | t^2+13t-5=0 | | 12f=30 | | Y=3(-1x-1)-2x-1+2 | | X÷2x-10-4=-1 | | 3(v-4)-8v=-7 | | -4x-6=-3x-8 | | 9j-5-13j=2j+9-4j | | (3x)³=216 | | 4(5x+3)=4x+5 | | -10z=-4-8z | | 2x²/5+5x/4=10 | | 0.15w+0.35=0.22w-0.14. | | Y=-1.9x+0.5 | | 4(a-2)=7a+2 | | -29=3(-8+2c)-7c | | -5(5a-3)=-135 | | 3x+52=8x-8 | | -(5a-3)=-135 | | 4c-10=10+8c | | Ax3927.86=9819.65 | | -7w+9=-21w+8w | | 12x+2=10x+6 | | 8(5x+7)-60=0 | | 20(a+1)=4a+3 | | 47-17=6x+9x | | 7n^2-63=0 | | -23+4v=-3v-9 |

Equations solver categories