If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+12y=0
a = 4; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·4·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*4}=\frac{-24}{8} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*4}=\frac{0}{8} =0 $
| 0=2x²+4x+10 | | x=-8+1/2 | | x=6+3/5 | | 9x+54/4=-63 | | X(12-0.025x)=0 | | 5x-15/2=-25 | | -3x/5-3=-15 | | 1x+50=50-x | | 19+27x=13+28x | | -4x/5+1=-7 | | 4x-2=x+30 | | -3/11=5-h/h-1.4 | | 3(x-3)+2=11 | | m/3-8=12 | | x/6+3=15 | | 0=x(12-0.025x) | | 9t+3=21 | | -28=(x+9)(x-19) | | 20-4/(1+1)=x | | -2(5+6n)+16=-90 | | 20-4/(1+7)=x | | 5x-2(x-2)=-9+5x-3 | | 20-4/(1+2)=x | | -3-p=-9 | | -5(-6n-8)=-4n+16 | | 2x-6/5=12 | | 2x+2(60)=800 | | -8x/3+3=27 | | -8p+28=-2(7p-2) | | 6(x+4)+6=66 | | 5(x-4)+1=-39 | | 16x+5=9x-25 |