If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+13y=0
a = 4; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·4·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*4}=\frac{-26}{8} =-3+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*4}=\frac{0}{8} =0 $
| 2(x+1)-(x-1)=7 | | 9g-3g+1=10+5g | | 5r=6r+10 | | 24=-5v-7v | | -7u=-9u-8 | | y+12.2=17 | | -7x+5(x-22)=-86 | | 4+(b+2)=8(b+5) | | -7u=-9u−8 | | 28+9x=64 | | 1-9d=-d+1 | | 8z=7z-10 | | 0.12x^2-1.8x+10=0 | | 2(-5y+13)–5.7=20.3 | | 10v=8+9v | | 1+-k/10=-7 | | -4(x-2)+5x=4(x+2)–5x | | 15y=25y2+2 | | 460=100+20n | | -6w=-5w-10 | | k-3=-10 | | 7x-4(4)=16 | | t/2-3=3 | | 25y2-15y+2=0 | | -2+4v=-30 | | y/10=14 | | k−(−65 )=−61 | | 42=3v-9 | | 35=-5x+6(3x-18) | | z+5=57 | | 2x+x+6=3(x+2) | | -15n+7n+1=3-8n |