If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+37y+9=0
a = 4; b = 37; c = +9;
Δ = b2-4ac
Δ = 372-4·4·9
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-35}{2*4}=\frac{-72}{8} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+35}{2*4}=\frac{-2}{8} =-1/4 $
| 8h=88 | | -29=-9+4(b-3) | | 195=5(x+17) | | 0.8x-1=-9 | | 2x+1x=2x-2x+5x-10 | | x/8-9=407 | | 4−10u=-9u | | 2n+8=96+4n+20 | | 5x(x+4)+10=30 | | 0.6x+5=-1 | | 8x-6=7+2x | | -(7x+1)=-4(x+7) | | 5y-3y-15=9.82 | | -34-8=2(7-8b) | | 20x+15=135 | | 23+10x=4x-1 | | 5-3x=5(1+3x) | | -28+4m=6(7m+8) | | 3y-8=6y+2 | | 3x-32=84+1x | | 0.25=2^-x | | (9x-17)+(4x+28)=180 | | y–12=20 | | 2.5x+14=94 | | 6a-4+4a+32=180 | | 2(x-2)=2.5x-3 | | 5(-7x+2)=-60 | | r-19=45 | | 5=u/3 | | 7(8h-3)=91 | | 257=15y+75 | | 4x^2+28.65x+50.41=0 |