If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+5y-12=0
a = 4; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·4·(-12)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{217}}{2*4}=\frac{-5-\sqrt{217}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{217}}{2*4}=\frac{-5+\sqrt{217}}{8} $
| 3.2^x=96 | | 2y1+20=20 | | 20.x/8-1/2=x/6-2 | | (7x3)=30 | | 3e.e=3 | | 0.84-0.03x=2.78 | | x^2-5x-2446=0 | | x+(146-x)+(146-x)=180 | | 2-(3x-8))5-(4x-9)=1/2 | | 1/3(2p-1)=5/9 | | (3t-2)/4=(2t+3)/3=3/3-t | | 0.22(350+x)=x | | 0.3(350+x)=x | | 150x+100x(250-80x)=170x+250 | | 7^(x+1)-7^(x-1)=336 | | 6-3y=2y-4 | | 3x-16/8x+14=0 | | 3^x-^4=7^x-^1 | | x=7(4x+8)/2 | | 38+12x=64-x | | (p-1)(p^2+10p+24)=0 | | 7h-35=3h/2 | | 7h-35=3/2(h) | | 7h-35=3/2h | | a=5y | | 5x-17/3=-6 | | 60x+65x=300 | | -4(u-1)=6u+24 | | -4(u-10=6u+24 | | b/0.09=2.7 | | 171232020=x+(x*0.02)171232020=x+(x*0.02) | | 153-w=209 |