If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+6y-2=0
a = 4; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·4·(-2)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{17}}{2*4}=\frac{-6-2\sqrt{17}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{17}}{2*4}=\frac{-6+2\sqrt{17}}{8} $
| 20+y=16y | | 16y=20+y | | 373+x=1,176 | | 7w-5=67 | | 6-15-6y=17 | | −√48x−√3x2=0 | | 4x+6+1=11 | | 3X+10y=12 | | a-7=—3 | | 0.3x+x/2=0.15+2 | | 0.3x+x/2=0 | | 7x²=4x | | 4(3^(2x+1))+17(3^x)=7 | | (t-7)²=16 | | (t-7)2=16 | | 3y2+8=72 | | 6*7=2x+11 | | 5m2+18=13 | | x(2x+3)-1=0 | | 3x²-3x-2=0 | | (x×4)-(x÷4)=135 | | z2-13=0 | | 2x²+3x-1=0 | | 2n+6=48n= | | x^2+10x-2250=0 | | 2(2x+8)=13 | | 3/4=z/20 | | (x+2)(x-1,35)-3x=0 | | 4e+2=-6 | | 5x^2+45x-49860=0 | | 6d-7=-25 | | (x+2)(x-1,35)-3=0 |