If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+9y+4=0
a = 4; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·4·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*4}=\frac{-9-\sqrt{17}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*4}=\frac{-9+\sqrt{17}}{8} $
| 6q2+2q+3=0 | | X*3x=320 | | 4p2+9p+5=0 | | 3r^2–4r–4=0 | | 0.8×x=3.28 | | 3r2–4r–4=0 | | 7z2+7z+9=0 | | 3(n-18)=27 | | O.8xx=3.28 | | 10=√a+3/2 | | 3p2+5p+1=0 | | 1.5^x=3 | | 7q^2-6q+2=0 | | 5a-3+15a+23=180 | | P=-8p+9p | | 600=225+3x | | 6x+6=6(x+1)+1 | | 3x+2+5x-7=90 | | 6x+6=6(x+6)+1 | | 16x8(2x)=2x | | 2v^2+2v+8=0 | | 4x+30.99=60.89 | | 5u^2+3u-7=0 | | 1.5x-1.5=11-x | | 12-4w=16 | | 42=-(z-3) | | 1.5-1.5=11-x | | x-0,15x=126,11 | | 24+y=7 | | 4(k-20=3(k+5) | | 6v^2-6v-1=0 | | (5x-2)=4(2x+3) |