If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-10=54
We move all terms to the left:
4y^2-10-(54)=0
We add all the numbers together, and all the variables
4y^2-64=0
a = 4; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·4·(-64)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*4}=\frac{-32}{8} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*4}=\frac{32}{8} =4 $
| B^2+2b=75 | | -4x+20=-3x+118 | | 62.80=23.142h | | 5=-3-1/9x | | x-6/12=40 | | 7/3x+(-3)=4 | | 3x-5x-7=-2x+5-7 | | 3=1/2y | | 25=-5+2/3m | | y+1116=4 | | 12x-24x=-36x | | 1.8x=1.5x+18.72 | | x/8-17=7 | | 12x-24x=36x | | .6x+9=7x-5 | | -3-1/4x=9 | | 3g=-7 | | 9y+3=180 | | 7x+2=-35 | | -0.54=00.4h | | -5x+2(-5x-10)=-50 | | 4y-2°=21° | | (–17––14)×(10+18÷–9)=a | | -2x-16=-5(x+5) | | 3x+18+4x+15=180° | | 9+3y=180 | | 9.76–5.15x+(–10.85x)=8.76–11 | | 51+3y=180 | | 3x+12=5x-60 | | a/30=14 | | 6(6x+5)=36x+30 | | |4x+12|+5=21 |