If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=256
We move all terms to the left:
4y^2-(256)=0
a = 4; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·4·(-256)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*4}=\frac{-64}{8} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*4}=\frac{64}{8} =8 $
| x=(5x-72)*(5x-72) | | 8^3-2x=0 | | 3n-3(-3n+9)+1=58 | | n+8/8=-1 | | 8x+12-3x=34 | | 8(-3n=7)=8 | | 211=288-y | | 180-(61+5x-15)=x | | 12+9.50c=50 | | x/8+3=-42 | | x/10+2=0.7 | | x/9+1.5=7.8 | | x/7+1=18 | | 5c/8=5 | | -4(3x+1)-3(2x-3)=0 | | 3b+18=30 | | 9s-5=31 | | 2.5(x-2)=1.5x=1 | | 4c-9=19 | | 8d-8=16 | | 157+x-16=180 | | 9d-3=33 | | 2.3=y-4 | | 10c=16.89 | | X^2-2=5x-8 | | b-5.34=7.2 | | (9x-2)(x+9)=0 | | a+5.34=7.2 | | 4-7x2+3=2 | | 1.5g=16.5 | | 0.03*0.03*0.03*0.03*0.03=x | | 25x+15=7x-3 |