If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=32
We move all terms to the left:
4y^2-(32)=0
a = 4; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·4·(-32)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*4}=\frac{0-16\sqrt{2}}{8} =-\frac{16\sqrt{2}}{8} =-2\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*4}=\frac{0+16\sqrt{2}}{8} =\frac{16\sqrt{2}}{8} =2\sqrt{2} $
| 11y−3=3y+293y+29 | | 6×-5=7-9x | | 7x+9=6x-x+6+3 | | 6(x+2)-6x+12)=0 | | 0.5x+0.9=0.8x-0.3 | | 11v-9+5v=-25 | | 18x+26=20x | | 9x-10=5x+34 | | (5/3)+(3m/5)=(37/15) | | 2x+13+10x=144 | | 4(a-5)=2a+15 | | 4y-6(y+3)=(2y)-2 | | -5f-8=-8f+10+5f | | 4t+4=18t-6t | | 2x+10+4x-3=9x-69.5 | | 0x+8=2x+6 | | X+3x+4x=28 | | 10(x+)-(-9x-4)=x-5+3 | | 2n-12=n/4 | | 3x+8-5x-5=2(x+6-7x) | | 4a-5=2 | | 5x+2(x+5)=38 | | 180=(180-x)-x+116 | | 10(x-3)=-10(x+9) | | 2(-5y+6)=(2y-8) | | 6=52.50-0.85x | | 10(g=5)=2(g+9) | | 13/8=u/7 | | 2/3x-12=-8 | | 0.15(40)+0.70x=0.50(40+x) | | -14y=-13y+17 | | 5x+10(x+4)+25(x+13)=845 |