If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y=38-(-1/2)(4y+16)
We move all terms to the left:
4y-(38-(-1/2)(4y+16))=0
Domain of the equation: 2)(4y+16))!=0We multiply parentheses ..
y∈R
-(38-(-4y^2-1/2*16))+4y=0
We multiply all the terms by the denominator
-(38-(-4y^2-1+4y*2*16))=0
We calculate terms in parentheses: -(38-(-4y^2-1+4y*2*16)), so:We get rid of parentheses
38-(-4y^2-1+4y*2*16)
determiningTheFunctionDomain -(-4y^2-1+4y*2*16)+38
We get rid of parentheses
4y^2-4y*2*16+1+38
We add all the numbers together, and all the variables
4y^2-4y*2*16+39
Wy multiply elements
4y^2-128y*1+39
Wy multiply elements
4y^2-128y+39
Back to the equation:
-(4y^2-128y+39)
-4y^2+128y-39=0
a = -4; b = 128; c = -39;
Δ = b2-4ac
Δ = 1282-4·(-4)·(-39)
Δ = 15760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15760}=\sqrt{16*985}=\sqrt{16}*\sqrt{985}=4\sqrt{985}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-4\sqrt{985}}{2*-4}=\frac{-128-4\sqrt{985}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+4\sqrt{985}}{2*-4}=\frac{-128+4\sqrt{985}}{-8} $
| 17z-4=8z-17+5z+37 | | Y+3=2(x,7) | | -18=2x-6(x+1) | | x(x+8)-(5x2=+3x) | | 2(5-x)/8=x+15 | | 7/9y-14=7 | | 10v2+19v–2=0 | | -2(3x-1)=10 | | 4w^2+13w+10=0 | | 4w2+13w+10=0 | | 4a+4=360 | | -10=8+2(x-6) | | -6x-47=27-4x | | x/15-6.3=2.7 | | 2/3e=12 | | 2x+2x+3x+3x+4x+8+16-7-18+25=720 | | -2(w-1)=15 | | n+9/3-4=3 | | 18-48v=-54 | | (2z+3)/3+(3z-4)/6=(z-2)/2 | | -8u=56 | | 4b+3=4b+3 | | 480m=8×7.5 | | 3x+7-6x=19 | | 3x-24x+42=12 | | 12/6y-14=-2 | | 90+.40x=30+.70x | | 2.5/7=b/4 | | 8x-7-2x=2x-18+4x+11 | | 6+4=-2(8x-5) | | Y=3/5u+;u | | 15n(n+9)=3(45+5n) |