If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z(z-1)=19
We move all terms to the left:
4z(z-1)-(19)=0
We multiply parentheses
4z^2-4z-19=0
a = 4; b = -4; c = -19;
Δ = b2-4ac
Δ = -42-4·4·(-19)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{5}}{2*4}=\frac{4-8\sqrt{5}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{5}}{2*4}=\frac{4+8\sqrt{5}}{8} $
| 12x^2-4x+3=0 | | x+40/100x=1 | | 100x-x^2=2475 | | K*x^2-3*x+1=0 | | Kx^2-3x+1=0 | | 6k-4=7 | | 3(x-3)=5(2x=1) | | 4x+8=6x+9 | | 12x^2-972=0 | | 12x^2+9=981 | | 4d-d^2-32=0 | | 7-(5x+3)=14 | | 3(6r-1)+r=-22 | | u5=243 | | 144=12(p+3) | | 10k+3=8k=27 | | -18=4a+2a | | 1x-1=2x-8 | | 48x3-36x2=0 | | 35y=45 | | 3÷5y=45 | | x=x+10/24 | | 5+b/2-b=2 | | x/10+1=9 | | -6+8k=10 | | y=-11/3y(3y+1) | | -4(x-3)+12=20 | | y=7.916666667·10-1 | | 9=3a+6 | | 247=84x^2+901x | | Y/5+4/7=y/7-4/7 | | x+(x+24)+4(x+24)=180 |