5(0.5x-4)=5/2x-20

Simple and best practice solution for 5(0.5x-4)=5/2x-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(0.5x-4)=5/2x-20 equation:



5(0.5x-4)=5/2x-20
We move all terms to the left:
5(0.5x-4)-(5/2x-20)=0
Domain of the equation: 2x-20)!=0
x∈R
We multiply parentheses
0x-(5/2x-20)-20=0
We get rid of parentheses
0x-5/2x+20-20=0
We multiply all the terms by the denominator
0x*2x+20*2x-20*2x-5=0
Wy multiply elements
0x^2+40x-40x-5=0
We add all the numbers together, and all the variables
x^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 7(3p-1)-(p+5)=-52 | | 58+78=f | | 2m−119=m10 | | 14=2m+8 | | w5=11 | | 19=3s+10 | | 15(x+15)-(-5)=6 | | 32=4f-40 | | 7y-15=6y-1 | | y-5(y+10)=186 | | 10=-35+9x | | −7= −3+a | | -2=-4+w/8 | | 0.6x+1.2=1.1x+1.65 | | c+23/4=10 | | 5x−2/11=-7 | | −7=  −3+a | | 7^2x-1=11^x | | 2q-12=2 | | w+5=94 | | –18 ÷ ( 11 − –7)=d | | 2x+8=-4x+4 | | 7x-13=8x-14 | | 3^3x+1=1 | | -3(x-3)-2(3x-4x)=-1 | | 2x+7=-5x+20 | | 48n^2+18n-30=0 | | 2=m+9/2 | | 3|2x-6|=24 | | 2x3+3x=x+11 | | -55+4x=30+9x+50 | | 1/2y-18=-12 |

Equations solver categories