If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(2-3a)-9a=4(3-2a)a=
We move all terms to the left:
5(2-3a)-9a-(4(3-2a)a)=0
We add all the numbers together, and all the variables
5(-3a+2)-9a-(4(-2a+3)a)=0
We add all the numbers together, and all the variables
-9a+5(-3a+2)-(4(-2a+3)a)=0
We multiply parentheses
-9a-15a-(4(-2a+3)a)+10=0
We calculate terms in parentheses: -(4(-2a+3)a), so:We add all the numbers together, and all the variables
4(-2a+3)a
We multiply parentheses
-8a^2+12a
Back to the equation:
-(-8a^2+12a)
-(-8a^2+12a)-24a+10=0
We get rid of parentheses
8a^2-12a-24a+10=0
We add all the numbers together, and all the variables
8a^2-36a+10=0
a = 8; b = -36; c = +10;
Δ = b2-4ac
Δ = -362-4·8·10
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{61}}{2*8}=\frac{36-4\sqrt{61}}{16} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{61}}{2*8}=\frac{36+4\sqrt{61}}{16} $
| 8x+10=4x^2+6 | | 3.3.8x=-19 | | 4t+48=180 | | 1.68x=13.44 | | 2.8+x/2=-12 | | 5(2-3a)-9a=4(3-2a) | | (x+3)*5=6*x-105x+15=6x-1015+10=6x-5x | | 1.8(5y+3)+5.6=29 | | 2=r-(-19) | | 3(w-2)-6w=6 | | 9a−5aa=7 | | s-9+31+s-50=180 | | 0.5(2c-3)-0.8c=2.7 | | 6h^2-2h-49=0 | | 2=r-(-19 | | 3(4x-1)-7x=2(x+4)+4 | | 12|9x+1|+4=148 | | 2(1−x)=11 | | 7w+82=180 | | (2x+4)=5x-5-2x | | (3n+7)^2=6n+14 | | 3x+10=-33 | | 63x59= | | z-20+37+z-9=180 | | 3/4x+12=4/3x | | x(-10)=90 | | 2m=-7=3(m+8) | | 2(5x-9)=6x+17 | | 65=–8x–15 | | w-19=47 | | 4x=+1220 | | 5+12=6x-10 |