If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(2k-3)-3(k+4)/3k+2k=-2
We move all terms to the left:
5(2k-3)-3(k+4)/3k+2k-(-2)=0
Domain of the equation: 3k!=0We add all the numbers together, and all the variables
k!=0/3
k!=0
k∈R
2k+5(2k-3)-3(k+4)/3k+2=0
We multiply parentheses
2k+10k-3(k+4)/3k-15+2=0
We multiply all the terms by the denominator
2k*3k+10k*3k-3(k+4)-15*3k+2*3k=0
We multiply parentheses
2k*3k+10k*3k-3k-15*3k+2*3k-12=0
Wy multiply elements
6k^2+30k^2-3k-45k+6k-12=0
We add all the numbers together, and all the variables
36k^2-42k-12=0
a = 36; b = -42; c = -12;
Δ = b2-4ac
Δ = -422-4·36·(-12)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{97}}{2*36}=\frac{42-6\sqrt{97}}{72} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{97}}{2*36}=\frac{42+6\sqrt{97}}{72} $
| -6(x+8)=54 | | 0,2=0,5^x | | 4r+16=44 | | |2p-6|=10 | | 4(-6x+6)-3=-75 | | -78=6(4m+3) | | 11x-34=180 | | (x+21)+(3x-23)=90 | | 6(-7x-9)=17 | | m−–39/–9=–9 | | F=38c+125 | | –3z–6=3 | | 5(-4x+3)-6=2(5x-3) | | |2g-3|=5 | | -3(n+2)=-30 | | 107-8=3(-7-5z) | | 107-8=3(-7-5z | | 4.6x2.1=9.66 | | w/7+6.2=11.3 | | 2z+5/z-2=0 | | 8q–7=49 | | -3c+25=76 | | 2x-1-0.5=-0.5 | | 3x3−12x2−21x+30=0;x–5 | | 7x+6x-40=80-4x | | 87=-3(-2+3w) | | 4c+27=63 | | (x+17)=(3x-15) | | 7x+23=618 | | 6j-9=75 | | 8(x-3)+7=(4-17)/2x | | 8(x-3)+7=(4-17)x2x |