5(2k-3)-3(k+4)/3k+2;k=-2

Simple and best practice solution for 5(2k-3)-3(k+4)/3k+2;k=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2k-3)-3(k+4)/3k+2;k=-2 equation:



5(2k-3)-3(k+4)/3k+2k=-2
We move all terms to the left:
5(2k-3)-3(k+4)/3k+2k-(-2)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
We add all the numbers together, and all the variables
2k+5(2k-3)-3(k+4)/3k+2=0
We multiply parentheses
2k+10k-3(k+4)/3k-15+2=0
We multiply all the terms by the denominator
2k*3k+10k*3k-3(k+4)-15*3k+2*3k=0
We multiply parentheses
2k*3k+10k*3k-3k-15*3k+2*3k-12=0
Wy multiply elements
6k^2+30k^2-3k-45k+6k-12=0
We add all the numbers together, and all the variables
36k^2-42k-12=0
a = 36; b = -42; c = -12;
Δ = b2-4ac
Δ = -422-4·36·(-12)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{97}}{2*36}=\frac{42-6\sqrt{97}}{72} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{97}}{2*36}=\frac{42+6\sqrt{97}}{72} $

See similar equations:

| 8=7(y+1)+2y | | 6x-5=9x-8 | | 4r-144=0 | | 3(2y-6)=4(2y+6) | | 36=x+17 | | 9x=4x+(x+16) | | -3(3+r)+4(r-6)=-4 | | 2/x+2=5/3x+19/9 | | (2.5+8.5a)=-28.5 | | x-4|9=5/9 | | 4/9=(x-5)/(3x+2) | | 24=15-x | | -4(4n+3)-8(6-7n)=20 | | 12=5y-61 | | 8*x+4=3*x+14 | | -35=-(2m-1)-4(4+2m) | | (8-z)(3z-5)=0 | | 16x+10=100 | | 4*x-2=3+3*x | | (6+9v)=0 | | 2(x+3)-(2-4)=3x-9-2x+4 | | 5x-6=10x-26 | | 100+10=x15 | | 100+10=x10 | | 17=b/14 | | -6×(x-1)=18 | | 9*y-3=19-2*y | | 12x-2=20x+1 | | -17=p/16 | | -7*x-11*x=-72 | | 17-3n=3 | | 4(8-3p)-5(p-1)=37 |

Equations solver categories