5(2n-3)-2=4(n+3)+37

Simple and best practice solution for 5(2n-3)-2=4(n+3)+37 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2n-3)-2=4(n+3)+37 equation:


Simplifying
5(2n + -3) + -2 = 4(n + 3) + 37

Reorder the terms:
5(-3 + 2n) + -2 = 4(n + 3) + 37
(-3 * 5 + 2n * 5) + -2 = 4(n + 3) + 37
(-15 + 10n) + -2 = 4(n + 3) + 37

Reorder the terms:
-15 + -2 + 10n = 4(n + 3) + 37

Combine like terms: -15 + -2 = -17
-17 + 10n = 4(n + 3) + 37

Reorder the terms:
-17 + 10n = 4(3 + n) + 37
-17 + 10n = (3 * 4 + n * 4) + 37
-17 + 10n = (12 + 4n) + 37

Reorder the terms:
-17 + 10n = 12 + 37 + 4n

Combine like terms: 12 + 37 = 49
-17 + 10n = 49 + 4n

Solving
-17 + 10n = 49 + 4n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-4n' to each side of the equation.
-17 + 10n + -4n = 49 + 4n + -4n

Combine like terms: 10n + -4n = 6n
-17 + 6n = 49 + 4n + -4n

Combine like terms: 4n + -4n = 0
-17 + 6n = 49 + 0
-17 + 6n = 49

Add '17' to each side of the equation.
-17 + 17 + 6n = 49 + 17

Combine like terms: -17 + 17 = 0
0 + 6n = 49 + 17
6n = 49 + 17

Combine like terms: 49 + 17 = 66
6n = 66

Divide each side by '6'.
n = 11

Simplifying
n = 11

See similar equations:

| 7(n+2)=5(n+10) | | 2x^2+6XY-49X-14Y= | | 6(3n+3)=9(n+2) | | 8(n-6)=2(n+12) | | 21/2x10 | | 2(1-x)=5+x | | -9f-3+5=35 | | .18a+.1(20-a)=.14(20) | | 4(3x-8)=6x-16 | | -8(7+4r)=19 | | (-a^2-5a+3)-(a^2+3a-2)= | | 4-6-7x=-2 | | 20=-3+7(b-2) | | 4=c/9 | | -6(1-2h)=-20 | | -5.25x=-40.33575 | | 8(n-12)=208 | | -8-7(1+6s)=-24 | | 8(n-12)=108 | | -2z-9-8z=-30 | | 4x-6=5(x-5) | | 3(7a+2)=17+4a | | X^2-6x+5=-14 | | 0=x^2-44x+c | | 25010%= | | (5x^3+8x^2-5x+10)+(4x^3+10x^2-4x-4)= | | 3x^2*x= | | 12=z/y | | 9(x+2)=56 | | 6x-30=-4x+18 | | 8x+9y=7781.25 | | 6x-30=-4+18 |

Equations solver categories