5(2x+1)=5(3x-2)x=

Simple and best practice solution for 5(2x+1)=5(3x-2)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2x+1)=5(3x-2)x= equation:



5(2x+1)=5(3x-2)x=
We move all terms to the left:
5(2x+1)-(5(3x-2)x)=0
We multiply parentheses
10x-(5(3x-2)x)+5=0
We calculate terms in parentheses: -(5(3x-2)x), so:
5(3x-2)x
We multiply parentheses
15x^2-10x
Back to the equation:
-(15x^2-10x)
We get rid of parentheses
-15x^2+10x+10x+5=0
We add all the numbers together, and all the variables
-15x^2+20x+5=0
a = -15; b = 20; c = +5;
Δ = b2-4ac
Δ = 202-4·(-15)·5
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{7}}{2*-15}=\frac{-20-10\sqrt{7}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{7}}{2*-15}=\frac{-20+10\sqrt{7}}{-30} $

See similar equations:

| 5/6=20/x+5 | | 7=9x+5 | | (z-7)/3=(z-6)/2 | | 18-x=-56 | | 3(x+2)=5x-1 | | |x-2|+|x-5|=7 | | 25-9x=x+5 | | (2.5)^2x=64 | | 5(4/3)+y=7 | | 1/3b+2/3b=5/6B | | v=14+73 | | 3p-15=p+15 | | 54l+43.44=3605.26 | | 1/3b+2/3b=-5/6B= | | 1/8x+x=180 | | -2+6=-2(x-3) | | 7^m=343 | | 2x+12=12-4 | | 7m-4-2m=6A | | 3^(2x)-3^(x+1)+14=0 | | 5-3m=7m-15 | | 4x-(1/4)=8 | | X2x3=540 | | 42=y/3 | | 18 = k3+ 14 | | -22/3+x/6=2/3 | | -2x+18=12 | | 2n-7+3(4n-3)=3 | | 5x+8-x=2x+1 | | -88x=x-4x | | 85x+50=25x+70 | | z-7/3=z-6/2z= |

Equations solver categories