5(3d+2)+15=4(2d+5)7d+5

Simple and best practice solution for 5(3d+2)+15=4(2d+5)7d+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3d+2)+15=4(2d+5)7d+5 equation:



5(3d+2)+15=4(2d+5)7d+5
We move all terms to the left:
5(3d+2)+15-(4(2d+5)7d+5)=0
We multiply parentheses
15d-(4(2d+5)7d+5)+10+15=0
We calculate terms in parentheses: -(4(2d+5)7d+5), so:
4(2d+5)7d+5
We multiply parentheses
56d^2+140d+5
Back to the equation:
-(56d^2+140d+5)
We add all the numbers together, and all the variables
15d-(56d^2+140d+5)+25=0
We get rid of parentheses
-56d^2+15d-140d-5+25=0
We add all the numbers together, and all the variables
-56d^2-125d+20=0
a = -56; b = -125; c = +20;
Δ = b2-4ac
Δ = -1252-4·(-56)·20
Δ = 20105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-\sqrt{20105}}{2*-56}=\frac{125-\sqrt{20105}}{-112} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+\sqrt{20105}}{2*-56}=\frac{125+\sqrt{20105}}{-112} $

See similar equations:

| 9x+6=5x+10 | | 3x+27=6(x+1) | | -5=x=15 | | 2x+83=3x+53 | | 3x+5+x=3x-7 | | 4x+21x-2=5(5x+5) | | 4(2x-5)=3x+4+2x | | 13x-4=9x-31 | | x*2-11x=-30 | | 74.7=10.3w+33.5 | | 3(u+2)=7u+38 | | 4.6w=2.6w+24 | | 14+22n=35+15n | | 10x-23=12x-53 | | 2x-60=-40 | | -1/2t=18 | | 5+6x=6+2x= | | 10=x15 | | (10x-5)=(3x+86) | | 8+25x+7=10x+60 | | W=2w-10 | | 3x−4(x+2)=6 | | 7v+9-10=-18 | | 2c+3c/5=7 | | 13x-8=83 | | 8x–13,224=11x | | 2.4c=-12 | | 2(1.10)^x+1=14 | | -0.71x+0.51x=5.4 | | 8b=–7+9b | | 6-(-3)=(-4)-w | | -2m+14=6m+46 |

Equations solver categories