5(3x+2)=(x+6)(3x+2)

Simple and best practice solution for 5(3x+2)=(x+6)(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3x+2)=(x+6)(3x+2) equation:



5(3x+2)=(x+6)(3x+2)
We move all terms to the left:
5(3x+2)-((x+6)(3x+2))=0
We multiply parentheses
15x-((x+6)(3x+2))+10=0
We multiply parentheses ..
-((+3x^2+2x+18x+12))+15x+10=0
We calculate terms in parentheses: -((+3x^2+2x+18x+12)), so:
(+3x^2+2x+18x+12)
We get rid of parentheses
3x^2+2x+18x+12
We add all the numbers together, and all the variables
3x^2+20x+12
Back to the equation:
-(3x^2+20x+12)
We add all the numbers together, and all the variables
15x-(3x^2+20x+12)+10=0
We get rid of parentheses
-3x^2+15x-20x-12+10=0
We add all the numbers together, and all the variables
-3x^2-5x-2=0
a = -3; b = -5; c = -2;
Δ = b2-4ac
Δ = -52-4·(-3)·(-2)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*-3}=\frac{4}{-6} =-2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*-3}=\frac{6}{-6} =-1 $

See similar equations:

| 3(x-1)=4+2 | | 20=5/2d | | 65/100=y/60 | | 6(x-2)+6=3(x+2)+9 | | 4+5v=4 | | 3=2g−7 | | 10n-14=8 | | 4x+8=9x-10 | | (4x+7)=(5x+11) | | 4x+8=9x-19 | | 3x+10=13x-20 | | 11g-12g=8 | | -8x+7(5x-2)=4(7x-7) | | X+6×x=91 | | 1.2(u-(-4.2))=9.36 | | 11g−12g=8 | | 6(x-2)=4-3 | | 6-5o=7o+18 | | 14/5=71/5x | | 1.2(u−(–4.2))=9.36 | | 2.9=y-14.2 | | –17g−–4g+–9=17 | | 13-s=2.5 | | 12x-11x-1=17 | | -12n-24=-3(4n-6) | | 3x/2+x/3=1/6 | | 8a-(-8a)+a=17 | | 2x+5=3+2x | | 1.25x=22.5 | | 2(x+3)-3=x+4 | | -3(j+4)=-6 | | h=2(134+-2)-3 |

Equations solver categories