5(3z-1)-3(z+2)=10(z+1)

Simple and best practice solution for 5(3z-1)-3(z+2)=10(z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(3z-1)-3(z+2)=10(z+1) equation:


Simplifying
5(3z + -1) + -3(z + 2) = 10(z + 1)

Reorder the terms:
5(-1 + 3z) + -3(z + 2) = 10(z + 1)
(-1 * 5 + 3z * 5) + -3(z + 2) = 10(z + 1)
(-5 + 15z) + -3(z + 2) = 10(z + 1)

Reorder the terms:
-5 + 15z + -3(2 + z) = 10(z + 1)
-5 + 15z + (2 * -3 + z * -3) = 10(z + 1)
-5 + 15z + (-6 + -3z) = 10(z + 1)

Reorder the terms:
-5 + -6 + 15z + -3z = 10(z + 1)

Combine like terms: -5 + -6 = -11
-11 + 15z + -3z = 10(z + 1)

Combine like terms: 15z + -3z = 12z
-11 + 12z = 10(z + 1)

Reorder the terms:
-11 + 12z = 10(1 + z)
-11 + 12z = (1 * 10 + z * 10)
-11 + 12z = (10 + 10z)

Solving
-11 + 12z = 10 + 10z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-10z' to each side of the equation.
-11 + 12z + -10z = 10 + 10z + -10z

Combine like terms: 12z + -10z = 2z
-11 + 2z = 10 + 10z + -10z

Combine like terms: 10z + -10z = 0
-11 + 2z = 10 + 0
-11 + 2z = 10

Add '11' to each side of the equation.
-11 + 11 + 2z = 10 + 11

Combine like terms: -11 + 11 = 0
0 + 2z = 10 + 11
2z = 10 + 11

Combine like terms: 10 + 11 = 21
2z = 21

Divide each side by '2'.
z = 10.5

Simplifying
z = 10.5

See similar equations:

| 2x-21=3 | | 9+2x=25 | | 3x^2-12=9 | | 11+6x=47 | | 8+4x=44 | | 9x-21=42 | | 6x-3=87 | | -2x+3y=3 | | a=.5b-4 | | 3x-1=8x-6 | | y=2x+9 | | y=2(x+7)(x-3) | | -2(x+7)=9x | | 10+5x=50 | | 10-4x=50 | | 6+6x=36 | | (5x+7)(x+5)=23 | | 4ur+483=32 | | 7-9a=9-9a | | 4a^2-9=9a | | 8(n+4)=2n-10 | | 5x+2=3x-4 | | 2x-4y=14 | | c^2-16=0 | | 3(5x-7)(2x+3)=0 | | 2y-1x=-6 | | c^2-7c+12=0 | | y=5(x+3)(x+-2) | | p+z-9=70 | | b^2+4=4b | | (c+14)(c-16)=0 | | y=2(x+-4)(x+5) |

Equations solver categories