If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(4z+6)-z(z-4)=7z(z+4)-z(7z-2)-48
We move all terms to the left:
5(4z+6)-z(z-4)-(7z(z+4)-z(7z-2)-48)=0
We multiply parentheses
-z^2+20z+4z-(7z(z+4)-z(7z-2)-48)+30=0
We calculate terms in parentheses: -(7z(z+4)-z(7z-2)-48), so:We add all the numbers together, and all the variables
7z(z+4)-z(7z-2)-48
We multiply parentheses
7z^2-7z^2+28z+2z-48
We add all the numbers together, and all the variables
30z-48
Back to the equation:
-(30z-48)
-1z^2+24z-(30z-48)+30=0
We get rid of parentheses
-1z^2+24z-30z+48+30=0
We add all the numbers together, and all the variables
-1z^2-6z+78=0
a = -1; b = -6; c = +78;
Δ = b2-4ac
Δ = -62-4·(-1)·78
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{87}}{2*-1}=\frac{6-2\sqrt{87}}{-2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{87}}{2*-1}=\frac{6+2\sqrt{87}}{-2} $
| 192=1/24(2x+2x-10) | | -10=-4x=-10 | | 180=6400/x | | 2x/11-5=-3 | | -1.05-0.21r=0.14r+2.1r=-9 | | 75,000=10,000(1.03)^4x | | 1.5x-180=x | | 2(u-8)-6=-3(-6u+9)-u | | -7(y-5)=5y-49 | | -2x-5=-5x+1 | | 7|4n+8|−6=106 | | 3(v-4)-5v=8 | | s+7=315 | | -4w+7=11w=-1 | | 200+12(a)=644 | | 2x=11x-6 | | 37=(6x-11) | | 7m=-105 | | -3/2x-4=2/3x-4/3 | | 6x-5=-7x-138 | | 14x-200=30800 | | 6x+5=7x-138 | | 50-b=0.25 | | -2/3x-1/5x=x-1 | | 10(1=3x)+-80 | | -3(5w-8)+3w=3(w+9) | | x75=236 | | 28000+3000x=36000+12000x | | 240=l(10) | | 28,000+3,000x=36000+12,000x | | 48=15x+9x | | 31=3(y+2)-8y |