5(a-1)-a(a-2)=-3(2a+1)-2

Simple and best practice solution for 5(a-1)-a(a-2)=-3(2a+1)-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(a-1)-a(a-2)=-3(2a+1)-2 equation:



5(a-1)-a(a-2)=-3(2a+1)-2
We move all terms to the left:
5(a-1)-a(a-2)-(-3(2a+1)-2)=0
We multiply parentheses
-a^2+5a+2a-(-3(2a+1)-2)-5=0
We calculate terms in parentheses: -(-3(2a+1)-2), so:
-3(2a+1)-2
We multiply parentheses
-6a-3-2
We add all the numbers together, and all the variables
-6a-5
Back to the equation:
-(-6a-5)
We add all the numbers together, and all the variables
-1a^2+7a-(-6a-5)-5=0
We get rid of parentheses
-1a^2+7a+6a+5-5=0
We add all the numbers together, and all the variables
-1a^2+13a=0
a = -1; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-1)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-1}=\frac{-26}{-2} =+13 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| 8x-5=4x-40 | | 6=v÷2 | | m/4=3/7 | | 40-4x=5-8x | | 3/5d-1/5d+10=4 | | x/8+7=20 | | (1/4y)-7=(1/3y) | | -47+6x=21+8x | | 6x+0.8=48.8 | | 3(x+2)-4=21 | | 1x+6-9=3 | | -9=w/2-7 | | 2(3x+6)=-3(2x-6) | | 8+3u=29 | | 5x-99=-51 | | -177+14x=7x+61 | | 0.03x+0.17(x+3000)=1310 | | 3(7r-21)=21r-6 | | O.75w+6=9-4w | | -186-10x=66+2x | | 2|4w−1|=3|4w+2|2|4w−1|=3|4w+2| | | 2x+8-24=96 | | |3k−2|=2|k+2||3k−2|=2|k+2|. | | 9x+3=15x-6 | | 9y^2-76y+160=0 | | 6×(a÷3)=2a | | x-5/4+5/4=x/7 | | w+4/15=3/5 | | 2/5g=-1.5 | | X=6.2x+5=5.2x | | p+6/15=12/10 | | 5x²-23x+12=0 |

Equations solver categories