If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(b+3)-5(b2-1)=b2+7(3-b)-1
We move all terms to the left:
5(b+3)-5(b2-1)-(b2+7(3-b)-1)=0
We add all the numbers together, and all the variables
-5(+b^2-1)+5(b+3)-(b2+7(-1b+3)-1)=0
We multiply parentheses
-5b^2+5b-(b2+7(-1b+3)-1)+5+15=0
We calculate terms in parentheses: -(b2+7(-1b+3)-1), so:We add all the numbers together, and all the variables
b2+7(-1b+3)-1
We add all the numbers together, and all the variables
b^2+7(-1b+3)-1
We multiply parentheses
b^2-7b+21-1
We add all the numbers together, and all the variables
b^2-7b+20
Back to the equation:
-(b^2-7b+20)
-5b^2+5b-(b^2-7b+20)+20=0
We get rid of parentheses
-5b^2-b^2+5b+7b-20+20=0
We add all the numbers together, and all the variables
-6b^2+12b=0
a = -6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-6)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-6}=\frac{-24}{-12} =+2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-6}=\frac{0}{-12} =0 $
| F(-4)=-2x-4 | | 5x+15=555x | | 2(u-69)=46 | | 1=-5+c | | 2r-3(5-r)=12+2r | | 8(p-86)=88 | | 8x-6x+186=8x+120 | | +4u-6=2u+6 | | (a+10)*(a-10=) | | 9=c+15/3 | | 4/7+y=1/3 | | 10-2q=0 | | 3x+5=x+45 | | 3x/6-2=15 | | x+4/x+2=8/4-x | | 17x=714 | | 63=9(g-86) | | 2(3x-6)+5=10x-3 | | 1/x+1/x+1/x+1/x=24 | | n/10+3=9 | | 714=17x | | x(x-1)=182 | | m/7-1=2 | | x-6=1/2x | | s*5-25=80 | | 18b+12=0 | | v/7+4.4=-13 | | 13.22+0.08(x+3)=13.97-0.09 | | 4(k-75)=52 | | z/3+8=11 | | (6+x)=3x-6 | | (3x-8)(5x+10)=0 |