5(b+7)=3(b2+9)

Simple and best practice solution for 5(b+7)=3(b2+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(b+7)=3(b2+9) equation:



5(b+7)=3(b2+9)
We move all terms to the left:
5(b+7)-(3(b2+9))=0
We add all the numbers together, and all the variables
-(3(+b^2+9))+5(b+7)=0
We multiply parentheses
-(3(+b^2+9))+5b+35=0
We calculate terms in parentheses: -(3(+b^2+9)), so:
3(+b^2+9)
We multiply parentheses
3b^2+27
Back to the equation:
-(3b^2+27)
We add all the numbers together, and all the variables
5b-(3b^2+27)+35=0
We get rid of parentheses
-3b^2+5b-27+35=0
We add all the numbers together, and all the variables
-3b^2+5b+8=0
a = -3; b = 5; c = +8;
Δ = b2-4ac
Δ = 52-4·(-3)·8
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*-3}=\frac{-16}{-6} =2+2/3 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*-3}=\frac{6}{-6} =-1 $

See similar equations:

| 5x+1/4=6/4 | | 7(b-8)=3b+12 | | 7×(b+2)=21 | | 1/9y-14/3=15 | | 8x=4x=4 | | 1/9y-42/3=15 | | a=3+4×5 | | 5x=8+3* | | 7.06x+9=49.8436+3x | | 10+3(2x-4)=14x-2 | | 5+(a+2)=20 | | 1/2(-8x+12)=2x-12 | | 5×(a+2)=20 | | 0.2(10x+15)=2.5(0.2x+5) | | x.x+10=5 | | 2x+21/3x=75 | | 18x5=x32 | | 60-y=222 | | 3x-2=9x-14 | | V=0.2x6 | | -1.8x=6(x+2.16) | | 3x+⁴=3³x–² | | 15—x=48 | | (a2-3a=0 | | 46(3x)=12480 | | -7(x-3)+5=11 | | Y=650000(1+0.4)^x | | 21+9=aa= | | 36=m/6+22 | | 9/2x=1/2 | | x/39=215 | | x*39=215 |

Equations solver categories