5(d+1)=4(d2)

Simple and best practice solution for 5(d+1)=4(d2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(d+1)=4(d2) equation:



5(d+1)=4(d2)
We move all terms to the left:
5(d+1)-(4(d2))=0
determiningTheFunctionDomain 5(d+1)-4d2=0
We add all the numbers together, and all the variables
-4d^2+5(d+1)=0
We multiply parentheses
-4d^2+5d+5=0
a = -4; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·(-4)·5
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{105}}{2*-4}=\frac{-5-\sqrt{105}}{-8} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{105}}{2*-4}=\frac{-5+\sqrt{105}}{-8} $

See similar equations:

| 2v^2=-14v | | 12x-15=35 | | 4(5y-2)=4 | | 25x=871/2 | | 3.35=x^2+x | | 36x=12x3 | | 3a−15=4a−3a | | 4x+40+2x-10=90 | | 4x+40+2x+10=90 | | (x+1)x5=25 | | 5+1+5x=750 | | 5(y+3)+8(y-4)+6=0 | | 0=-0.00635x2+4.0005x-0.07875 | | 4x+14=8x-48 | | (1/2)x1=(3/2)x-8 | | -2=5x+4 | | 12x+36=84 | | 7p+3=23 | | 7^x-2=(1/2401)^2x-5 | | X/3+x/4+15=x | | 5z+40=14 | | x+0.2^x=-33.69 | | 3/4m+6=2 | | 21x2=21 | | 6y-4=2y+7= | | X-0.19x+1.24x=2283 | | 2x+10+4x+50=180 | | 15=x÷-3 | | 16x-15=10x-21 | | x+9+7=19 | | 2(x=1)=1 | | 4x-6+2(2x+5)=-4(x+1) |

Equations solver categories