If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(m)2=10
We move all terms to the left:
5(m)2-(10)=0
We add all the numbers together, and all the variables
5m^2-10=0
a = 5; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·5·(-10)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*5}=\frac{0-10\sqrt{2}}{10} =-\frac{10\sqrt{2}}{10} =-\sqrt{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*5}=\frac{0+10\sqrt{2}}{10} =\frac{10\sqrt{2}}{10} =\sqrt{2} $
| -18=6(v+6)+3v | | x+61+70+61=180 | | -x2+9×+6=20,x=2 | | -34=-8u+6(u-4) | | 4x+15-7x+10=180 | | 7x+5+8x+10x=180 | | 3x-2x=15-8 | | 90=5x+7+4x+2 | | 40(t–1)–4´9(t–1)2=20t–4´9t2 | | x+110+25=180 | | -48=6{v+2} | | 17=5-3r | | 10x-2+13x+2=138 | | 2v+13=31 | | 66+78+x=180 | | g/0.625=1 | | x2−11x+19=−5 | | 2-y+33=133 | | 2-y+33=33 | | 2-y+33=90 | | 0.125f=3 | | 2-y+33=360 | | 7x+2x-137=187 | | x/5=2=3.7 | | 8(7x+2)=128 | | 2-y+33=180 | | 7x+53=74 | | 3x3=9+9+ | | 124b=117.8 | | 4-(x-6)=-8 | | 96+-8k=3k+63 | | -3x+5x-39=13 |