If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(n+2)=(3/5)(5+10n)
We move all terms to the left:
5(n+2)-((3/5)(5+10n))=0
Domain of the equation: 5)(5+10n))!=0We add all the numbers together, and all the variables
n∈R
5(n+2)-((+3/5)(10n+5))=0
We multiply parentheses
5n-((+3/5)(10n+5))+10=0
We multiply parentheses ..
-((+30n^2+3/5*5))+5n+10=0
We multiply all the terms by the denominator
-((+30n^2+3+5n*5*5))+10*5*5))=0
We calculate terms in parentheses: -((+30n^2+3+5n*5*5)), so:We add all the numbers together, and all the variables
(+30n^2+3+5n*5*5)
We get rid of parentheses
30n^2+5n*5*5+3
Wy multiply elements
30n^2+125n*5+3
Wy multiply elements
30n^2+625n+3
Back to the equation:
-(30n^2+625n+3)
-(30n^2+625n+3)=0
We get rid of parentheses
-30n^2-625n-3=0
a = -30; b = -625; c = -3;
Δ = b2-4ac
Δ = -6252-4·(-30)·(-3)
Δ = 390265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-625)-\sqrt{390265}}{2*-30}=\frac{625-\sqrt{390265}}{-60} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-625)+\sqrt{390265}}{2*-30}=\frac{625+\sqrt{390265}}{-60} $
| X/8-4=3x/4-6 | | 78=-6(-5+2n) | | 2x-5/7=9x+4 | | 7x-30+4x+18=90 | | 12x+8=26x-52 | | 5x+2(3(x-4)+1)=33 | | 18-6b=-8(3b-7) | | 11x-2=8x+1 | | 4x-1=-7+x | | 180=46-3x(90) | | -8(x+4)=-6x | | -23=7+5w | | -6=2/3-1/3y | | 3(3v+1)=5(-2v-2) | | 9m-9=5m+7 | | O.7n-1.5+7.3n=14.5 | | 6x+3+6x=135 | | 6(x-2)/3=2(x+5)/8 | | 5y+3=9y | | 4x+4+5x-7+17=3x | | 41x=36 | | 0.5(j+2=6 | | 180-x=46-3•(90-×) | | 6(x-2)/3=2(x+5)|8 | | 4(-2p-5)=-68 | | 3X+1=2+2x | | 4x-19=3x-7 | | 2—5=x | | (y*2)*(2*2)=216 | | -2(8x-8)+6x=6(x+5) | | 7−3m=2m+7−5m | | 3x-7=4x+19 |